Commonsense question answering (QA) requires a model to grasp commonsense and factual knowledge to answer questions about world events. Many prior methods couple language modeling with knowledge graphs (KG). However, although a KG contains rich structural information, it lacks the context to provide a more precise understanding of the concepts. This creates a gap when fusing knowledge graphs into language modeling, especially when there is insufficient labeled data. Thus, we propose to employ external entity descriptions to provide contextual information for knowledge understanding. We retrieve descriptions of related concepts from Wiktionary and feed them as additional input to pre-trained language models. The resulting model achieves state-of-the-art result in the CommonsenseQA dataset and the best result among non-generative models in OpenBookQA.
翻译:常见问题解答(QA)需要一个模型来掌握常识和事实知识,以解答关于世界事件的问题。许多以前的方法是将语言与知识图表(KG)相结合。然而,虽然KG包含丰富的结构信息,但它缺乏提供更准确概念理解的背景。这在将知识图表纳入语言模型时造成了差距,特别是在没有贴标签的数据的情况下。因此,我们提议使用外部实体描述来提供背景信息,以了解知识。我们从Wiktionary检索相关概念的描述,并将其作为附加投入提供给预先培训的语言模型。由此形成的模型取得了最先进的结果,产生了普世智卡数据集,以及OpenBookQA的非基因模型的最佳结果。