This paper is devoted to signal processing on point-clouds by means of neural networks. Nowadays, state-of-the-art in image processing and computer vision is mostly based on training deep convolutional neural networks on large datasets. While it is also the case for the processing of point-clouds with Graph Neural Networks (GNN), the focus has been largely given to high-level tasks such as classification and segmentation using supervised learning on labeled datasets such as ShapeNet. Yet, such datasets are scarce and time-consuming to build depending on the target application. In this work, we investigate the use of variational models for such GNN to process signals on graphs for unsupervised learning.Our contributions are two-fold. We first show that some existing variational-based algorithms for signals on graphs can be formulated as Message Passing Networks (MPN), a particular instance of GNN, making them computationally efficient in practice when compared to standard gradient-based machine learning algorithms. Secondly, we investigate the unsupervised learning of feed-forward GNN, either by direct optimization of an inverse problem or by model distillation from variational-based MPN. Keywords:Graph Processing. Neural Network. Total Variation. Variational Methods. Message Passing Network. Unsupervised learning


翻译:本文致力于通过神经网络对点球进行信号处理。 如今, 图像处理和计算机视觉方面的最先进技术主要基于对大型数据集的深层进化神经网络的培训。 虽然与图形神经网络(GNN)一起处理点球也属于这种情况, 但重点主要放在高层次的任务上, 例如使用对标签数据集(如 ShapeNet) 的监管学习进行分类和分解。 然而, 这样的数据集非常稀少, 并且根据目标应用程序来建立花费时间。 在这项工作中, 我们调查GNN的变异模型如何用于对无监督学习的图形进行进程信号。 我们的贡献有两部分。 我们首先显示, 现有的图形信号的基于变异的算法可以被写成信息传递网络( MPN ), 特别是GNN( MPN), 这使得这些数据集与标准的基于梯度的机器学习算法相比在实践中具有计算效率。 其次, 我们通过直接的模范式GNNNNNN网络学习, 或者通过直接的模版压方式处理。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【KDD2020】图神经网络:基础与应用,322页ppt
专知会员服务
75+阅读 · 2020年8月30日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
179+阅读 · 2020年4月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
13+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Operator Compression with Deep Neural Networks
Arxiv
0+阅读 · 2021年5月25日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
【KDD2020】图神经网络:基础与应用,322页ppt
专知会员服务
75+阅读 · 2020年8月30日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
179+阅读 · 2020年4月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
13+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Operator Compression with Deep Neural Networks
Arxiv
0+阅读 · 2021年5月25日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
17+阅读 · 2019年3月28日
Top
微信扫码咨询专知VIP会员