Multipath transport protocols enable the concurrent use of different network paths, benefiting a fast and reliable data transmission. The scheduler of a multipath transport protocol determines how to distribute data packets over different paths. Existing multipath schedulers either conform to predefined policies or to online trained policies. The adoption of millimeter wave (mmWave) paths in 5th Generation (5G) networks and Wireless Local Area Networks (WLANs) introduces time-varying network conditions, under which the existing schedulers struggle to achieve fast and accurate adaptation. In this paper, we propose FALCON, a learning-based multipath scheduler that can adapt fast and accurately to time-varying network conditions. FALCON builds on the idea of meta-learning where offline learning is used to create a set of meta-models that represent coarse-grained network conditions, and online learning is used to bootstrap a specific model for the current fine-grained network conditions towards deriving the scheduling policy to deal with such conditions. Using trace-driven emulation experiments, we demonstrate FALCON outperforms the best state-of-the-art scheduler by up to 19.3% and 23.6% in static and mobile networks, respectively. Furthermore, we show FALCON is quite flexible to work with different types of applications such as bulk transfer and web services. Moreover, we observe FALCON has a much faster adaptation time compared to all the other learning-based schedulers, reaching almost an 8-fold speedup compared to the best of them. Finally, we have validated the emulation results in real-world settings illustrating that FALCON adapts well to the dynamicity of real networks, consistently outperforming all other schedulers.
翻译:多路传输协议允许同时使用不同的网络路径, 有利于快速和可靠的数据传输。 多路传输协议的调度器决定了如何在不同路径上分发数据包。 现有的多路传输协议的调度器要么符合预先定义的政策, 要么符合在线培训的政策。 在第五代( 5G) 网络和无线局域网中采用毫米波( mmWave) 路径, 引入了时间变化式网络条件, 使现有的调度器难以快速和准确地适应这些条件。 在本文中, 我们提议 FALCON, 一个基于学习的多路程调度器, 能够快速和准确地适应时间变化的网络条件。 FALCON 建基于元学习的想法, 用来创建一套代表粗化网络条件的元体型( mmmWave) 。 在线学习被用来为当前精细的网络设置一个具体模型, 用来引导基于这种条件的时间安排政策。 使用由跟踪驱动的模拟模拟实验, 我们演示FALCON的快速速度速度, 将最佳状态的进度比对最佳的网络进行比较, AL AL AL 3 和最灵活的移动的进度显示我们最快速的进度 的进度, 的进度到最灵活的进度, 以19的进度向不同的进度向不同的轨道 。