Sequential transfer optimization (STO), which aims to improve optimization performance by exploiting knowledge captured from previously-solved optimization tasks stored in a database, has been gaining increasing research attention in recent years. However, despite significant advancements in algorithm design, the test problems in STO are not well designed. Oftentimes, they are either randomly assembled by other benchmark functions that have identical optima or are generated from practical problems that exhibit limited variations. The relationships between the optimal solutions of source and target tasks in these problems are manually configured and thus monotonous, limiting their ability to represent the diverse relationships of real-world problems. Consequently, the promising results achieved by many algorithms on these problems are highly biased and difficult to be generalized to other problems. In light of this, we first introduce a few rudimentary concepts for characterizing STO problems (STOPs) and present an important problem feature overlooked in previous studies, namely similarity distribution, which quantitatively delineates the relationship between the optima of source and target tasks. Then, we propose general design guidelines and a problem generator with superior extendibility. Specifically, the similarity distribution of a problem can be systematically customized by modifying a parameterized density function, enabling a broad spectrum of representation for the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 individual STOPs is developed using the proposed generator, which can serve as an arena for comparing different STO algorithms. The source code of the benchmark suite is available at https://github.com/XmingHsueh/STOP.
翻译:暂无翻译