Hyperspectral dehazing (HyDHZ) has become a crucial signal processing technology to facilitate the subsequent identification and classification tasks, as the airborne visible/infrared imaging spectrometer (AVIRIS) data portal reports a massive portion of haze-corrupted areas in typical hyperspectral remote sensing images. The idea of inverse problem transform (IPT) has been proposed in recent remote sensing literature in order to reformulate a hardly tractable inverse problem (e.g., HyDHZ) into a relatively simple one. Considering the emerging spectral super-resolution (SSR) technique, which spectrally upsamples multispectral data to hyperspectral data, we aim to solve the challenging HyDHZ problem by reformulating it as an SSR problem. Roughly speaking, the proposed algorithm first automatically selects some uncorrupted/informative spectral bands, from which SSR is applied to spectrally upsample the selected bands in the feature space, thereby obtaining a clean hyperspectral image (HSI). The clean HSI is then further refined by a deep transformer network to obtain the final dehazed HSI, where a global attention mechanism is designed to capture nonlocal information. There are very few HyDHZ works in existing literature, and this article introduces the powerful spatial-spectral transformer into HyDHZ for the first time. Remarkably, the proposed transformer-driven IPT-based HyDHZ (T2HyDHZ) is a blind algorithm without requiring the user to manually select the corrupted region. Extensive experiments demonstrate the superiority of T2HyDHZ with less color distortion.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员