This paper presents a method for text line segmentation of challenging historical manuscript images. These manuscript images contain narrow interline spaces with touching components, interpenetrating vowel signs and inconsistent font types and sizes. In addition, they contain curved, multi-skewed and multi-directed side note lines within a complex page layout. Therefore, bounding polygon labeling would be very difficult and time consuming. Instead we rely on line masks that connect the components on the same text line. Then these line masks are predicted using a Fully Convolutional Network (FCN). In the literature, FCN has been successfully used for text line segmentation of regular handwritten document images. The present paper shows that FCN is useful with challenging manuscript images as well. Using a new evaluation metric that is sensitive to over segmentation as well as under segmentation, testing results on a publicly available challenging handwritten dataset are comparable with the results of a previous work on the same dataset.
翻译:本文展示了具有挑战性的历史手稿图像的文字线分割方法。 这些手稿图像包含狭窄的线间空间, 带有触摸部件, 相互交织的元音符号和不一致的字体类型和大小。 此外, 还在复杂的页面布局中包含曲线、 多偏斜和多方向的侧注线。 因此, 捆绑多边形标签非常困难, 耗费时间。 相反, 我们依赖连接同一文本线上各组成部分的线面罩。 然后, 这些线面罩会使用全共网络( FCN) 预测。 在文献中, FCN 成功地用于普通手写文档图像的文字线分割。 本文显示, FCN 非常有用, 具有挑战性的手稿图像。 使用新的评价指标, 敏感地对截断面和分块下敏感, 在一个公开的、 具有挑战性的手写数据集上测试的结果, 与先前关于同一数据集的工作结果相似 。