With the development of fifth-generation (5G) networks, the number of user equipments (UE) increases dramatically. However, the potential health risks from electromagnetic fields (EMF) tend to be a public concern. Generally, EMF exposure-related analysis mainly considers the passive exposure from base stations (BSs) and active exposure that results from the user's personal devices while communicating. However, the passive radiation that is generated by nearby devices of other users is typically ignored. In fact, with the increase in the density of UE, their passive exposure to human bodies can no longer be ignored. In this work, we propose a stochastic geometry framework to analyze the EMF exposure from active and passive radiation sources. In particular, considering a typical user, we account for their exposure to EMF from BSs, their own UE, and other UE. We derive the distribution of the Exposure index (EI) and the coverage probability for two typical models for spatial distributions of UE, i.e., \textit{i)} a Poisson point process (PPP); \textit{ii)} a Matern cluster process. Also, we show the trade-off between the EMF exposure and the coverage probability. Our numerical results suggest that the passive exposure from other users is non-negligible compared to the exposure from BSs when user density is $10^2$ times higher than BS density, and non-negligible compared to active exposure from the user's own UE when user density is $10^5$ times the BS density.
翻译:暂无翻译