For a given $\varepsilon > 0$, we say that a graph $G$ is $\varepsilon$-flexibly $k$-choosable if the following holds: for any assignment $L$ of color lists of size $k$ on $V(G)$, if a preferred color from a list is requested at any set $R$ of vertices, then at least $\varepsilon |R|$ of these requests are satisfied by some $L$-coloring. We consider the question of flexible choosability in several graph classes with certain degeneracy conditions. We characterize the graphs of maximum degree $\Delta$ that are $\varepsilon$-flexibly $\Delta$-choosable for some $\varepsilon = \varepsilon(\Delta) > 0$, which answers a question of Dvo\v{r}\'ak, Norin, and Postle [List coloring with requests, JGT 2019]. In particular, we show that for any $\Delta\geq 3$, any graph of maximum degree $\Delta$ that is not isomorphic to $K_{\Delta+1}$ is $\frac{1}{6\Delta}$-flexibly $\Delta$-choosable. Our fraction of $\frac{1}{6 \Delta}$ is within a constant factor of being the best possible. We also show that graphs of treewidth $2$ are $\frac{1}{3}$-flexibly $3$-choosable, answering a question of Choi et al.~[arXiv 2020], and we give conditions for list assignments by which graphs of treewidth $k$ are $\frac{1}{k+1}$-flexibly $(k+1)$-choosable. We show furthermore that graphs of treedepth $k$ are $\frac{1}{k}$-flexibly $k$-choosable. Finally, we introduce a notion of flexible degeneracy, which strengthens flexible choosability, and we show that apart from a well-understood class of exceptions, 3-connected non-regular graphs of maximum degree $\Delta$ are flexibly $(\Delta - 1)$-degenerate.
翻译:对于给定的 $1 美元 > 0美元, 我们说, 一张G$ 是 $1 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 如果以下有以下特性的话: 对于以 美元 (G) 以 美元 大小的彩色列表中的任何分配 $1 美元, 如果以 美元 4 美元 要求列表中的首选颜色, 那么至少 $\ 瓦列普西隆 + 美元, 这些请求中 美元 3 美元 。 我们认为, 以 美元 美元 美元 美元 3 美元 的颜色 3 。 以 美元 美元 的 3 美元 美元 = 美元 3 美元 。 以 美元 美元 以 美元 以 美元 以 美元 以 美元 以 以 美元 以 以 美元 以 以 美元 以 以 以 美元 以 美元 以 以 以 美元 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 表示 以 以 以 以 以 以 以 表示 以 以 以 以 以 以 表示 表示 以 以 以 以 表示 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以