We consider non-trivial homomorphisms to reflexive oriented graphs in which some pair of adjacent vertices have the same image. Using a notion of convexity for oriented graphs, we study those oriented graphs that do not admit such homomorphisms. We fully classify those oriented graphs with tree-width $2$ that do not admit such homomorphisms and show that it is NP-complete to decide if a graph admits an orientation that does not admit such homomorphisms. We prove analogous results for $2$-edge-coloured graphs. We apply our results on oriented graphs to provide a new tool in the study of chromatic number of orientations of planar graphs -- a long-standing open problem.
翻译:我们认为,有些相邻的脊椎具有相同图像的反射方向图中的非三角同质性是非三角同质性的。我们用对准方向图中的静态概念来研究那些不承认这种同质性的定向图。我们用不认可这种同质性的直观图来对这些方向图进行充分分类,将那些不认可这种同质性的直线图和不承认这种同质性的直线图划为树形的2美元线形图进行充分分类,并表明如果一个图中承认一种不承认这种同质性的取向,那么该图是否是NP不完整的。我们证明,$2美元的顶层图的类似结果。我们在对准方向图中应用我们的结果,在对正准方向图中提供一种新工具,用于对平面图中方向的色数的研究,这是一个长期存在的问题。