We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $\mathbb{R}^3$. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $K_5$, $K_{5,81}$, or any nonplanar $3$-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $K_{4,4}$, and $K_{3,5}$ can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable $n$-vertex graphs is in $\Omega(n \log n)$. From the non-realizability of $K_{5,81}$, we obtain that any realizable $n$-vertex graph has $O(n^{9/5})$ edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.
翻译:我们用$\mathb{R ⁇ 3$来研究一个特定图表是否可以作为多面面形多边形细胞的相近图实现。 我们显示每个图表都可以作为带有任意多边形单元格的多元面面体实现, 如果我们要求每个边缘至少小化一次的任何图形的子面都存在, 并且根据McMulllen等人(1983年)的结果, 任何超立方体都存在。 我们的结果会影响描述多面面与正态单元格的最大图形密度。 另一方面, 所有的平面图、 $%4, 4美元和 $3, 3, 美元。 另一方面, 所有平面图、 $9, 美元, 和 美元3, 美元。 我们的结果将影响显示, 超正平面的最大值( $_ 5美元) 的数值不会超过正数。