Ex vivo MRI of the brain provides remarkable advantages over in vivo MRI for visualizing and characterizing detailed neuroanatomy, and helps to link microscale histology studies with morphometric measurements. However, automated segmentation methods for brain mapping in ex vivo MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution dataset of 37 ex vivo post-mortem human brain tissue specimens scanned on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures. We then segment the four subcortical structures: caudate, putamen, globus pallidus, and thalamus; white matter hyperintensities, and the normal appearing white matter. We show excellent generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at different magnetic field strengths and different imaging sequence. We then compute volumetric and localized cortical thickness measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, containerized executables, and the processed datasets are publicly available at: https://github.com/Pulkit-Khandelwal/upenn-picsl-brain-ex-vivo.
翻译:在离体脑部MRI中,相较于在体脑部MRI,提供了显著优势,可视化和特征化细节神经解剖学,帮助联系显微组织学研究与形态学量化测量。然而,由于标记化数据集的有限可用性和扫描器硬件和采集协议的异质性,离体MRI中的大脑映射自动化分割方法并不发达。在这项工作中,我们提供了一份高分辨率37份离体人脑组织标本的数据集,这些标本是在一台7T全身MRI扫描仪上扫描的。我们开发了一个深度学习流水线来分割皮层包括9个深度神经体系结构的性能基准。然后,我们分割四种亚皮质结构:尾状核、红核、球状淡带和丘脑;白质高信号区和正常出现的白质。我们展示了卓越的泛化能力穿过不同样本的整个大脑半球,以及在不同磁场强度和不同成像序列下未见过的图像上。我们然后计算关键区域的体积和局部皮层厚度测量,并将它们与半定量的病理学评级联系起来。我们的代码、容器化可执行文件和处理过的数据集可以在此处公开访问: https://github.com/Pulkit-Khandelwal/upenn-picsl-brain-ex-vivo。