NLP models trained on text have been shown to reproduce human stereotypes, which can magnify harms to marginalized groups when systems are deployed at scale. We adapt the Agency-Belief-Communion (ABC) stereotype model of Koch et al. (2016) from social psychology as a framework for the systematic study and discovery of stereotypic group-trait associations in language models (LMs). We introduce the sensitivity test (SeT) for measuring stereotypical associations from language models. To evaluate SeT and other measures using the ABC model, we collect group-trait judgments from U.S.-based subjects to compare with English LM stereotypes. Finally, we extend this framework to measure LM stereotyping of intersectional identities.
翻译:在文字方面受过培训的NLP模式被证明复制了人类陈规陋习,这些陈规陋习在大规模部署系统时会扩大对边缘化群体的伤害,我们从社会心理学的角度对机构-Belief-Communion(ABC)的Koch等人的陈规模式进行调整,作为系统研究和发现语言模式中的定型群体-trait协会的框架,我们引入了从语言模式中衡量定型协会的敏感性测试(SeT),用ABC模式评估SeT及其他措施,我们收集基于美国的主体的集团-贸易判断,以与英语LM陈规定型观念进行比较。最后,我们扩展了这一框架,以衡量LM对交叉身份的陈规陋习。