This paper presents an empirical study to build relation extraction systems in low-resource settings. Based upon recent pre-trained language models, we comprehensively investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; (iii) data augmentation technologies and self-training to generate more labeled in-domain data. We create a benchmark with 8 relation extraction (RE) datasets covering different languages, domains and contexts and perform extensive comparisons over the proposed schemes with combinations. Our experiments illustrate: (i) Though prompt-based tuning is beneficial in low-resource RE, there is still much potential for improvement, especially in extracting relations from cross-sentence contexts with multiple relational triples; (ii) Balancing methods are not always helpful for RE with long-tailed distribution; (iii) Data augmentation complements existing baselines and can bring much performance gain, while self-training may not consistently achieve advancement to low-resource RE. Code and datasets are in https://github.com/zjunlp/LREBench.
翻译:本文件介绍了在低资源环境下建立关系提取系统的实证研究。根据最近经过培训的语文模型,我们全面调查了三种评估低资源环境下绩效的计划:(一) 使用少量标签数据的不同类型快速方法;(二) 解决长期尾量分配问题的多种平衡方法;(三) 数据增强技术和自我培训,以生成更多标签的内部数据。我们建立了一个基准,包括涵盖不同语言、领域和背景的8个关系提取数据集,并对拟议的组合办法进行广泛比较。我们的实验表明:(一) 尽管快速调整对低资源资源资源再利用有益,但仍有很大的改进潜力,特别是在从多重关系三重线的交叉观点中提取关系方面;(二) 平衡方法并不总是有助于长尾量分配的再处理;(三) 数据增强对现有基线进行补充,并能够带来许多绩效收益,而自我培训可能无法始终向低资源再补给系统推进。代码和数据集在 https://github.com/zjunchl/BERP/Dapts。