This paper presents PyTSK, a Python toolbox for developing Takagi-Sugeno-Kang (TSK) fuzzy systems. Based on scikit-learn and PyTorch, PyTSK allows users to optimize TSK fuzzy systems using fuzzy clustering or mini-batch gradient descent (MBGD) based algorithms. Several state-of-the-art MBGD-based optimization algorithms are implemented in the toolbox, which can improve the generalization performance of TSK fuzzy systems, especially for big data applications. PyTSK can also be easily extended and customized for more complicated algorithms, such as modifying the structure of TSK fuzzy systems, developing more sophisticated training algorithms, and combining TSK fuzzy systems with neural networks. The code of PyTSK can be found at https://github.com/YuqiCui/pytsk.
翻译:本文展示了PyTSK, 这是开发Takagi- Sugeno-Kang(TSK) fuzzy 系统的一个Python工具箱。 基于 scikit-learn 和 PyTorch, PyTSK 允许用户使用模糊的集群或迷你batch梯度梯度(MBGD)的算法优化 TSK fuzzy 系统。 工具箱中实施了几种最先进的MBGD优化算法, 这可以改进TSK fuzzy系统的一般性能, 特别是大数据应用。 PyTSK 也可以为更复杂的算法, 如修改 TSK Fuzzy 系统的结构、开发更先进的培训算法以及将 TSK Fuzzy 系统与神经网络相结合, 可在 https://github.com/Yuqicui/pytsk 上找到 PyTSK 的代码 。