The recent popularity of edge devices and Artificial Intelligent of Things (AIoT) has driven a new wave of contextual recommendations, such as location based Point of Interest (PoI) recommendations and computing resource-aware mobile app recommendations. In many such recommendation scenarios, contexts are drifting over time. For example, in a mobile game recommendation, contextual features like locations, battery, and storage levels of mobile devices are frequently drifting over time. However, most existing graph-based collaborative filtering methods are designed under the assumption of static features. Therefore, they would require frequent retraining and/or yield graphical models burgeoning in sizes, impeding their suitability for context-drifting recommendations. In this work, we propose a specifically tailor-made Hybrid Static and Adaptive Graph Embedding (HySAGE) network for context-drifting recommendations. Our key idea is to disentangle the relatively static user-item interaction and rapidly drifting contextual features. Specifically, our proposed HySAGE network learns a relatively static graph embedding from user-item interaction and an adaptive embedding from drifting contextual features. These embeddings are incorporated into an interest network to generate the user interest in some certain context. We adopt an interactive attention module to learn the interactions among static graph embeddings, adaptive contextual embeddings, and user interest, helping to achieve a better final representation. Extensive experiments on real-world datasets demonstrate that HySAGE significantly improves the performance of the existing state-of-the-art recommendation algorithms.


翻译:最近边端装置的普及和事物的人工智能(AIoT)的流行最近促使了一系列新的背景建议,例如基于位置的利害点建议和计算有资源意识的移动应用程序建议。在许多这样的建议设想中,环境正在随时间而变化。例如移动游戏建议中,移动设备的位置、电池和存储水平等背景特征经常随时间而变化。然而,大多数基于图形的现有合作过滤方法是在静态特征的假设下设计的。因此,它们需要频繁的再培训和(或)产生在大小上涌出的图形模型,从而妨碍它们适合背景调整建议。在这项工作中,我们提出了一个专门定制的混合和适应性图嵌入(HySAG)网络,用于背景变化建议。我们的主要想法是将相对静态的用户项目互动和快速漂移的背景特征分开。我们拟议的HySAGEGE网络需要从用户项目互动中学习一个相对静态的图形嵌入一个相对固定的图形,以及从漂移的环境特性中调整嵌入的图形模型。这些嵌入式的嵌入式图像将让用户的当前在网络中了解一个显著的图像,从而了解某种对用户的当前定位的兴趣,我们了解了某种定位的图像的图像的定位定位定位的定位定位定位定位定位定位的图像定位的模型,从而将使得用户的图像定位的图像定位的模型的图像定位到某种理解到某种变化式的模型的模型的模型的模型中,从而将使得我们了解了某种变化到我们到某种图像的定位的定位的模型的定位的模型的模型的模型。我们到我们到我们到我们了解了某种变化中的某个到我们到我们了解了某种变化式的模型。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员