Accurate relative localization is an important requirement for a swarm of robots, especially when performing a cooperative task. This paper presents an autonomous multi-robot relative positioning technique. An Extended Kalman filter (EKF) uses onboard sensing of velocity, yaw rate, and height as inputs, and then estimates the relative position of other robots by fusing these quantities with ranging measurements obtained from onboard ultra wide-band (UWB). Specifically, innovations involve fast-ranging communication (333Hz for 2 robots), an automatic initialization procedure, proofs and demonstrations of consistent estimation convergence under control commands such as formation flight. Simulations concisely show the high precision, efficiency, and stability of the proposed localization method. Real-world experiments are conducted on a team of 5 Crazyflie2 quadrotors, demonstrating autonomous formation flight and coordinated flight through a window. All results indicate the effectiveness of the proposed relative positioning method for multi-robot systems. Video and code can be found at \textnormal{\url{https://shushuai3.github.io/autonomous-swarm/}}
翻译:精确相对本地化是机器人群的一个重要要求,特别是在执行合作任务时。本文件展示了一种自主的多机器人相对定位技术。扩展的卡尔曼过滤器(EKF)在机上对速度、亚湿率和高度进行输入感测,然后通过从机上超宽带(UWB)获得的一系列测量结果来估计其他机器人的相对位置。具体地说,创新涉及快速通信(2个机器人333Hz),自动初始化程序、证据和演示在编队飞行等控制指令下一致估计趋同的一致。模拟简洁地显示拟议本地化方法的高度精确性、效率和稳定性。现实世界实验是在一个由5个疯狂飞行2个二次钻机组成的小组进行的,展示了自动编组飞行和通过窗口的协调飞行。所有结果都表明拟议的多罗博系统相对定位方法的有效性。视频和代码可以在\textrmaly_url{https://shushuai3.github.io/adival-swarm/ }