In this work, we propose a Robust, Efficient, and Component-specific makeup transfer method (abbreviated as BeautyREC). A unique departure from prior methods that leverage global attention, simply concatenate features, or implicitly manipulate features in latent space, we propose a component-specific correspondence to directly transfer the makeup style of a reference image to the corresponding components (e.g., skin, lips, eyes) of a source image, making elaborate and accurate local makeup transfer. As an auxiliary, the long-range visual dependencies of Transformer are introduced for effective global makeup transfer. Instead of the commonly used cycle structure that is complex and unstable, we employ a content consistency loss coupled with a content encoder to implement efficient single-path makeup transfer. The key insights of this study are modeling component-specific correspondence for local makeup transfer, capturing long-range dependencies for global makeup transfer, and enabling efficient makeup transfer via a single-path structure. We also contribute BeautyFace, a makeup transfer dataset to supplement existing datasets. This dataset contains 3,000 faces, covering more diverse makeup styles, face poses, and races. Each face has annotated parsing map. Extensive experiments demonstrate the effectiveness of our method against state-of-the-art methods. Besides, our method is appealing as it is with only 1M parameters, outperforming the state-of-the-art methods (BeautyGAN: 8.43M, PSGAN: 12.62M, SCGAN: 15.30M, CPM: 9.24M, SSAT: 10.48M).
翻译:在这项工作中,我们提出了一种强力、高效和具体部件的化容转换方法(以美容为缓冲 ) 。 一种独特的不同做法是,以前采用的方法可以吸引全球注意力,只是组合特性,或者暗中操纵潜层空间的特性。 我们建议了一种具体组成部分的对应对应对应结构(如皮肤、嘴唇、眼睛),将参考图像的化容样式直接转移到源图像的相应组成部分(如皮肤、嘴唇、眼睛),进行精密和准确的当地化成。 作为辅助,为了有效的全球化妆转移,引入了变形器的远程视觉依赖性。 与通常使用的复杂和不稳定的循环结构不同,我们采用了一种独特的方法,我们采用了一种不同的循环结构结构,我们采用了一种内容一致性损失加上一个内容编码器来实施高效的单一方向化转换。 本研究的主要洞察力是将特定组成部分的成像样式转换成本地化的化成,掌握全球化妆图的长距离,通过单一式结构进行精密的转换。 我们还提供了“ 美容”, 一种配置数据组, 仅包含3000张面的变形结构, 面的PAFOM, 并展示了“ 我们的变形” 和“ 样” 。