Most of the existing single-stage and two-stage 3D object detectors are anchor-based methods, while the efficient but challenging anchor-free single-stage 3D object detection is not well investigated. Recent studies on 2D object detection show that the anchor-free methods also are of great potential. However, the unordered and sparse properties of point clouds prevent us from directly leveraging the advanced 2D methods on 3D point clouds. We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps. We propose an attentive module to fit the sparse feature maps to dense mostly on the object regions through the deformable convolution tower and the supervised mask-guided attention. By directly regressing the 3D bounding box from the enhanced and dense feature maps, we construct a novel single-stage 3D detector for point clouds in an anchor-free manner. We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression. Our code is publicly available at \url{https://github.com/jialeli1/MGAF-3DSSD}.


翻译:现有大多数单级和两阶段三维天体探测器都是以锚为基础的方法,而高效但富有挑战性的单级三维天体探测则没有很好地调查。最近关于二维天体探测的研究表明,无锚物体探测方法也有很大的潜力。然而,点云的未定序和稀少性质使我们无法在三维点云上直接利用先进的二维方法。我们通过将基于 voxel 的稀散三维特征体积转换成稀少的二维地貌图,克服了这一点。我们提议了一个专注模块,使稀有地貌图能够通过可变形的熔化塔和受监督的蒙面引导的注意,在物体区域密度大为密集。我们通过直接从强化和稠密的地貌图上倒退三维系框,为点云建立一个新型的三维天体探测器。我们提议了一个基于IoU的探测信任度再校正计划,以改进探测信任度和约束箱回归的准确性之间的关联性。我们的代码可在以下http://gthub.com/eliliADADADADSDDDSD.

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
专知会员服务
75+阅读 · 2021年9月27日
专知会员服务
32+阅读 · 2021年9月16日
深度学习目标检测方法及其主流框架综述
专知会员服务
147+阅读 · 2020年6月26日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
已删除
将门创投
7+阅读 · 2017年7月11日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
8+阅读 · 2018年5月17日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员