This paper establishes a formal equivalence between the architectural classes of modern agentic AI systems and the abstract machines of the Chomsky hierarchy. We posit that the memory architecture of an AI agent is the definitive feature determining its computational power and that it directly maps it to a corresponding class of automaton. Specifically, we demonstrate that simple reflex agents are equivalent to Finite Automata, hierarchical task-decomposition agents are equivalent to Pushdown Automata, and agents employing readable/writable memory for reflection are equivalent to TMs. This Automata-Agent Framework provides a principled methodology for right-sizing agent architectures to optimize computational efficiency and cost. More critically, it creates a direct pathway to formal verification, enables the application of mature techniques from automata theory to guarantee agent safety and predictability. By classifying agents, we can formally delineate the boundary between verifiable systems and those whose behavior is fundamentally undecidable. We address the inherent probabilistic nature of LLM-based agents by extending the framework to probabilistic automata that allow quantitative risk analysis. The paper concludes by outlining an agenda for developing static analysis tools and grammars for agentic frameworks.
翻译:本文确立了现代智能体人工智能系统的架构类别与乔姆斯基层级的抽象机器之间的形式等价关系。我们提出,人工智能智能体的记忆架构是决定其计算能力的决定性特征,并直接将其映射到相应的自动机类别。具体而言,我们证明简单反射智能体等价于有限自动机,分层任务分解智能体等价于下推自动机,而采用可读写记忆进行反思的智能体等价于图灵机。这一自动机-智能体框架提供了一种原则性方法,用于合理调整智能体架构以优化计算效率和成本。更重要的是,它开辟了一条通往形式验证的直接路径,使得能够应用自动机理论中的成熟技术来保证智能体的安全性和可预测性。通过对智能体进行分类,我们可以形式化地界定可验证系统与行为本质上不可判定的系统之间的边界。我们通过将框架扩展至允许定量风险分析的概率自动机,以应对基于大语言模型的智能体固有的概率性质。本文最后概述了为智能体框架开发静态分析工具和语法规范的议程。