We present a stylized model with feedback loops for the evolution of a population's wealth over generations. Individuals have both talent and wealth: talent is a random variable distributed identically for everyone, but wealth is a random variable that is dependent on the population one is born into. Individuals then apply to a downstream agent, which we treat as a university throughout the paper (but could also represent an employer) who makes a decision about whether to admit them or not. The university does not directly observe talent or wealth, but rather a signal (representing e.g. a standardized test) that is a convex combination of both. The university knows the distributions from which an individual's type and wealth are drawn, and makes its decisions based on the posterior distribution of the applicant's characteristics conditional on their population and signal. Each population's wealth distribution at the next round then depends on the fraction of that population that was admitted by the university at the previous round. We study wealth dynamics in this model, and give conditions under which the dynamics have a single attracting fixed point (which implies population wealth inequality is transitory), and conditions under which it can have multiple attracting fixed points (which implies that population wealth inequality can be persistent). In the case in which there are multiple attracting fixed points, we study interventions aimed at eliminating or mitigating inequality, including increasing the capacity of the university to admit more people, aligning the signal generated by individuals with the preferences of the university, and making direct monetary transfers to the less wealthy population.


翻译:我们展示了一个典型的模型,为人口财富的代代相传的演变提供反馈循环。 个人既有天赋,也有财富:人才是一种随机的变量,对每个人来说都是一样的随机变量,但财富却是一个随机变量,取决于生来的人口。 个人然后向下游代理机构提出申请,我们在整个报纸上(但也可以代表雇主)将其作为一所大学,决定是否接纳他们。 大学不直接观察人才或财富,而是一个信号(代表标准化测试),两者是交融的。 大学知道个人类型和财富的分布,但财富是随机变量,取决于生来的人口特征的外表分布。 下一轮的每个人口财富分配取决于大学是否接纳他们(但也可以代表雇主)决定是否接纳他们。 我们在这个模型中研究财富动态的动态,并给出一种吸引固定点(这意味着人口财富不平等是过渡性的)的条件。 大学了解个人类型和财富的分布,根据申请人特征的外表分布,根据其外表和信号根据其外表做出决定,取决于其人口特征的后表分布和信号。 下,每个人口在下一个回合的财富分配取决于大学的分数位比例。 意味着财富转移可以吸引更多的货币,我们研究。 货币不平等性研究可以吸引更多的货币, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月24日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员