We propose a fully mixed virtual element method for the numerical approximation of the coupling between stress-altered diffusion and linear elasticity equations with strong symmetry of total poroelastic stress (using the Hellinger--Reissner principle). A novelty of this work is that we introduce a less restrictive assumption on the stress-assisted diffusion coefficient, requiring an analysis of the perturbed diffusion equation using Banach spaces. The solvability of the continuous and discrete problems is established using a suitable modification of the abstract theory for perturbed saddle-point problems in Banach spaces (which is in itself a new result of independent interest). In addition, we establish optimal a priori error estimates. The method and its analysis are robust with respect to the poromechanical parameters. We also include a number of numerical examples that illustrate the properties of the proposed scheme.
翻译:本文提出了一种完全混合虚拟元方法,用于数值逼近应力改变扩散与具有总孔隙弹性应力强对称性的线性弹性方程之间的耦合问题(采用Hellinger-Reissner原理)。本工作的创新点在于引入了对应力辅助扩散系数限制更弱的假设,这要求使用Banach空间对扰动扩散方程进行分析。通过适当修改Banach空间中扰动鞍点问题的抽象理论(这本身也是一个具有独立意义的新结果),我们建立了连续问题和离散问题的可解性。此外,我们建立了最优先验误差估计。该方法及其分析对孔隙力学参数具有鲁棒性。我们还提供了若干数值算例,以说明所提方案的性质。