This paper presents how to use common random number (CRN) simulation to evaluate Markov chain Monte Carlo (MCMC) convergence to stationarity. We provide an upper bound on the Wasserstein distance of a Markov chain to its stationary distribution after $N$ steps in terms of averages over CRN simulations. We apply our bound to Gibbs samplers on a model related to James-Stein estimators, a variance component model, and a Bayesian linear regression model. For the first two examples, we show that the CRN simulated bound converges to zero significantly more quickly compared to available drift and minorization bounds.


翻译:本文阐述了如何利用公共随机数(CRN)模拟技术评估马尔可夫链蒙特卡洛(MCMC)方法向平稳分布的收敛过程。我们通过CRN模拟的平均值,给出了马尔可夫链经过N步迭代后与其平稳分布之间Wasserstein距离的上界估计。我们将该界估计方法应用于以下模型的吉布斯采样器:与James-Stein估计量相关的模型、方差分量模型以及贝叶斯线性回归模型。在前两个示例中,相较于现有的漂移与次化界估计方法,CRN模拟界估计收敛至零的速度显著更快。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员