This paper presents how to use common random number (CRN) simulation to evaluate Markov chain Monte Carlo (MCMC) convergence to stationarity. We provide an upper bound on the Wasserstein distance of a Markov chain to its stationary distribution after $N$ steps in terms of averages over CRN simulations. We apply our bound to Gibbs samplers on a model related to James-Stein estimators, a variance component model, and a Bayesian linear regression model. For the first two examples, we show that the CRN simulated bound converges to zero significantly more quickly compared to available drift and minorization bounds.
翻译:本文阐述了如何利用公共随机数(CRN)模拟技术评估马尔可夫链蒙特卡洛(MCMC)方法向平稳分布的收敛过程。我们通过CRN模拟的平均值,给出了马尔可夫链经过N步迭代后与其平稳分布之间Wasserstein距离的上界估计。我们将该界估计方法应用于以下模型的吉布斯采样器:与James-Stein估计量相关的模型、方差分量模型以及贝叶斯线性回归模型。在前两个示例中,相较于现有的漂移与次化界估计方法,CRN模拟界估计收敛至零的速度显著更快。