This work is an extension of previous work by Alazah et al. [M. Alazah, S. N. Chandler-Wilde, and S. La Porte, Numerische Mathematik, 128(4):635-661, 2014]. We split the computation of the Fresnel Integrals into 3 cases: a truncated Taylor series, modified trapezoid rule and an asymptotic expansion for small, medium and large arguments respectively. These special functions can be computed accurately and efficiently up to an arbitrary precision. Error estimates are provided and we give a systematic method in choosing the various parameters for a desired precision. We illustrate this method and verify numerically using double precision.
翻译:这是Alazah等人[M. Alazah、S. N. Chandler-Wilde和S. La Porte、Numerische Mathematik,128(4):635-661,2014年]先前工作的延伸。我们将Fresnel Informations的计算分成3个案例:一个短小泰勒系列、一个修改的孔化型规则以及一个小型、中型和大型参数的无症状扩展。这些特殊功能可以精确和高效地计算,达到任意的精确度。提供了错误估计,我们提供了选择各种参数以达到预期精确度的系统方法。我们用双重精确度来说明这个方法并进行数字核查。