The study of multiphase flow is essential for understanding the complex interactions of various materials. In particular, when designing chemical reactors such as fluidized bed reactors (FBR), a detailed understanding of the hydrodynamics is critical for optimizing reactor performance and stability. An FBR allows experts to conduct different types of chemical reactions involving multiphase materials, especially interaction between gas and solids. During such complex chemical processes, formation of void regions in the reactor, generally termed as bubbles, is an important phenomenon. Study of these bubbles has a deep implication in predicting the reactor's overall efficiency. But physical experiments needed to understand bubble dynamics are costly and non-trivial. Therefore, to study such chemical processes and bubble dynamics, a state-of-the-art massively parallel computational fluid dynamics discrete element model (CFD-DEM), MFIX-Exa is being developed for simulating multiphase flows. Despite the proven accuracy of MFIX-Exa in modeling bubbling phenomena, the very-large size of the output data prohibits the use of traditional post hoc analysis capabilities in both storage and I/O time. To address these issues and allow the application scientists to explore the bubble dynamics in an efficient and timely manner, we have developed an end-to-end visual analytics pipeline that enables in situ detection of bubbles using statistical techniques, followed by a flexible and interactive visual exploration of bubble dynamics in the post hoc analysis phase. Positive feedback from the experts has indicated the efficacy of the proposed approach for exploring bubble dynamics in very-large scale multiphase flow simulations.
翻译:多阶段流动的研究对于了解各种材料的复杂互动关系至关重要。特别是,在设计流化床反应堆(FBR)等化学反应堆时,详细了解流体动力学对于优化反应堆性能和稳定性至关重要。FBR允许专家进行不同种类的化学反应,涉及多阶段材料,特别是天然气和固体之间的相互作用。在这种复杂的化学过程中,在反应堆中形成空虚区域(通常称为泡沫)是一个重要现象。研究这些泡沫对预测反应堆的总体效率具有深刻影响。但是,在设计流化床反应堆(FBR)等化学反应堆时,详细了解流体动力学对于优化反应堆的性能和稳定性至关重要。因此,研究这种化学过程和气压动力学对于优化反应堆性能和气压动态是十分昂贵的。因此,研究这种化学过程和气压动力学的状态,通过利用一种动态学的可视化分析方法,通过一种可视化的化学动态学技术,通过一种可视化的动态分析,通过一种可视化的动态学方法,通过一种可视化的动态分析的方式,通过一种可视化的动态分析的方式,通过一种可视地分析的方式,通过一种可视化的、可视化的动态分析的方式,通过一种可视化的渠道分析,来及时地分析,通过一种可视化的、可探测性地分析方法来探讨性地分析,来探讨地分析。