The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify in this work the relevant evolutionary program synthesis approaches and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming. Further, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several sub-problems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way towards a solution (e.g., correctly solved sub-problems).


翻译:自动生成计算机程序是进化计算领域具有实际相关性的主要应用之一。由于程序合成技术不仅可以在日常工作中得到软件开发者的支持,而且即使没有编程知识的用户也可以被授权将重复性任务自动化并实施自己的新功能。近年来,提出了许多基于进化算法的新的程序合成方法,并对共同的基准问题进行了评估。因此,我们在此工作中确定了相关的进化方案合成方法,并深入分析了这些方法的绩效。我们发现,最有影响力的方法是堆叠式的、语法制的以及线性基因编程。此外,我们发现,如果从给定的输入到正确的输出,有了简单的绘图,这些方法在基准问题上效果良好。关于这种绘图的复杂性,例如,如果问题包括几个子问题,或者需要反复/反复解决,结果往往更差。因此,我们鼓励研究人员不仅使用程序的产出来评估解决方案的质量,而且还要找到解决办法(例如,正确解决子问题)。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月14日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员