Multibeam forward-looking sonar (MFLS) plays an important role in underwater detection. There are several challenges to the research on underwater object detection with MFLS. Firstly, the research is lack of available dataset. Secondly, the sonar image, generally processed at pixel level and transformed to sector representation for the visual habits of human beings, is disadvantageous to the research in artificial intelligence (AI) areas. Towards these challenges, we present a novel dataset, the underwater acoustic target detection (UATD) dataset, consisting of over 9000 MFLS images captured using Tritech Gemini 1200ik sonar. Our dataset provides raw data of sonar images with annotation of 10 categories of target objects (cube, cylinder, tyres, etc). The data was collected from lake and shallow water. To verify the practicality of UATD, we apply the dataset to the state-of-the-art detectors and provide corresponding benchmarks for its accuracy and efficiency.
翻译:在水下探测中,多波束前瞻性声纳(MFLS)在研究水下物体探测方面起着重要作用。在利用MFLS进行水下物体探测方面有若干挑战。首先,研究缺乏可用的数据集。第二,声纳图像一般在像素水平上处理,并转化成反映人类视觉习惯的部门性图象,不利于人工智能(AI)领域的研究。为了应对这些挑战,我们提出了一个新数据集,水下声控目标探测数据集,其中包括利用Tritech Gemini 1200ik声纳采集的9000多张MFLOS图像。我们的数据集提供了声纳图像原始数据,标明了10类目标物体(立方、气瓶、轮胎等)。这些数据是从湖泊和浅水收集的。为了验证UATD的实用性,我们将数据集应用到最先进的探测器,并为其准确性和效率提供相应的基准。