The majority of the solvers for the acoustic problem in Photoacoustic Tomography (PAT) rely on full solution of the wave equation which makes them less suitable for real-time and dynamic applications where only partial data is available. This is in contrast to other tomographic modalities, e.g. X-ray tomography, where partial data implies partial cost for the application of the forward and adjoint operators. In this work we present a novel solver for the forward and adjoint wave equations for the acoustic problem in PAT. We term the proposed solver Hamilton-Green as it approximates the fundamental solution to the respective wave equation along the trajectories of the Hamiltonian system resulting from the high frequency asymptotics for the wave equation. This approach is fast and scalable in the sense that it allows computing the solution for each sensor independently at a fraction of the cost of the full wave solution. The theoretical foundations of our approach are rooted in results available in seismics and ocean acoustics. We present results for 2D numerical phantom with heterogeneous sound speed which we evaluate against a full wave solution obtained with a pseudospectral method implemented in k-Wave toolbox.
翻译:光声成像(PAT) 中大多数声学问题解答器都依赖于波方程式的完整解决方案, 这使得这些解答器更不适合仅提供部分数据的实时和动态应用。 这与其他色学模式形成鲜明对比, 例如X射线透映, 部分数据意味着应用前方和连接操作器的部分成本。 在这项工作中, 我们为 PAT 中声学问题前方和联动波方程式提供了一个新颖的解答器。 我们称之为拟议的解答器汉密尔顿- 绿色, 因为它与汉密尔顿系统轨迹中各波方程式的基本解决方案相近, 原因是波方程式的频率高, 与波方形反射器不同。 这种方法既快速又可缩放, 因为它使得每个传感器的解答方法可以独立计算出, 其成本的一小部分。 我们的方法的理论基础根植根于地震和海洋声学中的现有结果。 我们给出了2D数值的幻门, 其声音速度与我们用在 kWWA 工具箱中应用的假光谱仪算得的全波解的全波解法来评估全波方。