In this paper, the 2-adic complexity of a class of balanced Whiteman generalized cyclotomic sequences of period $pq$ is considered. Through calculating the determinant of the circulant matrix constructed by one of these sequences, we derive a lower bound on the 2-adic complexity of the corresponding sequence, which further expands our previous work (Zhao C, Sun Y and Yan T. Study on 2-adic complexity of a class of balanced generalized cyclotomic sequences. Journal of Cryptologic Research,6(4):455-462, 2019). The result shows that the 2-adic complexity of this class of sequences is large enough to resist the attack of the rational approximation algorithm(RAA) for feedback with carry shift registers(FCSRs), i.e., it is in fact lower bounded by $pq-p-q-1$, which is far larger than one half of the period of the sequences. Particularly, the 2-adic complexity is maximal if suitable parameters are chosen.
翻译:本文考虑了一组平衡的白人通用环流序列的复杂程度。 通过计算由其中一种序列构建的环流矩阵的决定因素, 我们从相应的序列的复杂程度中得出一个较低的线条, 从而进一步扩大了我们以前的工作(赵C、孙Y和燕T. 关于平衡的通用环流序列的复杂程度的二度研究, 《加密研究杂志》, 6(4): 455-462, 2019) 。结果显示, 此类序列的复杂程度为2度,足以抵御理性近似算法(RAA)的冲击, 以进行随身转移登记册(FCSRs)的反馈, 也就是说, 与美元- p- p- q- -1 的关联程度实际上较低, 这比序列期的一半要大得多。 特别是, 如果选择了适当的参数, 2- a 复杂程度是最高值 。