Existing graph theoretic approaches are mainly restricted to floor-plans with rectangular boundary. In this paper, we introduce floor-plans with L-shaped boundary (boundary with only one concave corner). To ensure the L-shaped boundary, we introduce the concept of non-triviality of a floor-plan. A floor-plan with a rectilinear boundary with at least one concave corner is non-trivial if the number of concave corners can not be reduced, without affecting the modules adjacencies within it. Further, we present necessary and sufficient conditions for the existence of a non-trivial L-shaped floor-plan corresponding to a properly triangulated planar graph (PTPG) G. Also, we develop an O(n^2) algorithm for its construction, if it exists.
翻译:现有的图形理论方法主要限于具有矩形边界的楼层计划。在本文中,我们采用L形边界的楼层计划(边界只有一个锥形角)。为了确保L形边界,我们引入了地平面非三角性的概念。带有至少有一个锥形角的直线边界的楼层计划,如果无法减少锥形角的数目,同时又不影响其内部的相邻单元,那么它就不具有三角性。此外,我们提出了与适当三角平面图(PTPG)G相对应的非三边L形楼层计划的必要和充分条件。此外,如果有的话,我们为建造这一计划制定O(n)2算法。