The core is a dominant solution concept in economics and game theory. In this context, the following question arises, ``How versatile is this solution concept?'' We note that within game theory, this notion has been used for profit -- equivalently, cost or utility -- sharing only. In this paper, we show a completely different use for it: in an {\em investment management game}, under which an agent needs to allocate her money among investment firms in such a way that {\em in each of exponentially many future scenarios}, sufficient money is available in the ``right'' firms so she can buy an ``optimal investment'' for that scenario. We study a restriction of this game to {\em perfect graphs} and characterize its core. Our characterization is analogous to Shapley and Shubik's characterization of the core of the assignment game. The difference is the following: whereas their characterization follows from {\em total unimodularity}, ours follows from {\em total dual integrality}. The latter is another novelty of our work.
翻译:核心是经济学和游戏理论中的主要解决方案概念。在此背景下,出现以下问题:“这个解决方案概念有多多才多艺?”我们注意到,在游戏理论中,这个概念只用于利润 — — 等量、成本或效用 — — 共享。在本文中,我们展示了一种完全不同的用途:在投资管理游戏中,一个代理人需要在投资公司之间分配其资金,其方式是:在众多指数性未来情景中,每个指数性情景中的每个情景中, 都存在足够的资金, 在“权利”公司中, 我们有足够的资金, 这样她就可以为这个情景购买“最佳投资 ” 。 我们研究这个游戏的局限性, 以至于“ 优化图表 ” 和 其核心特征。 我们的特征类似于 Shapley 和 Shubik 对任务游戏核心的描述。 区别如下: 它们的定性取自于“ 整体单一组合性 ”, 而我们的特征则取自于“ 全部双重性 ” 。 后者是我们工作的另一个新颖性。