We first partly develop a mathematical notion of stable consistency intended to reflect the actual consistency property of human beings. Then we give a generalization of the first and second G\"odel incompleteness theorem to stably $1,2$-consistent formal systems. Our argument in particular re-proves the original incompleteness theorems from first principles, using Turing machine language to (computably) construct our "G\"odel sentence" directly, in particular we do not use the diagonal lemma, nor any meta-logic, with the proof naturally formalizable in set theory. In practice such a stably consistent formal system could be meant to represent the mathematical output of humanity evolving in time, so that the above gives a formalization of a famous disjunction of G\"odel, obstructing computability of intelligence.
翻译:首先,我们部分地发展了一个稳定一致性的数学概念,旨在反映人类的实际一致性特性。然后,我们将第一和第二个G\“odel completenity ” 理论的概括化用于刺杀符合1,200美元要求的正式系统。我们的论点特别重新证明了最初的不完全性理论来自最初的原则,用图灵机语言直接构建了我们的“G\'odel 句 ”, 特别是我们没有使用对角肌素,也没有使用任何元逻辑,而证据自然在既定理论中可以形式化。 在实践中,这种具有刺切性一致性的正式系统可以用来代表人类在时间上演进的数学产出,因此,以上给出了著名的G\'odel脱钩,阻碍了情报的兼容性。