Age of information (AoI) is one of the key performance metrics for Internet of things (IoT) systems. Timely status updates are essential for many IoT applications; however, they are subject to strict constraints related on the available energy and unreliability of underlying information sources. Hence, the scheduling of status updates must be carefully planned to preserve energy, but at the same time, it may happen that when a status update is needed, there is no reliable up-to-date information content to refresh. As a solution to overcome these unpredictabilities, one can employ multiple sources that track the same signal of interest, but with different energy costs and reliabilities, which we call information source diversity. We consider an energy-harvesting monitoring node equipped with a finite-size battery and collecting status updates from multiple heterogeneous information sources. We investigate the policies that minimize the average AoI, and evaluate the role of information source diversity on the system performance. To do so, we formulate the problem as a Markov decision process (MDP). The optimal policy represents the scheduling of actions, such as an update from one of the sources or remaining idle, based on the current energy level and the AoI at the monitoring node. We analyze the structure of the optimal solution for different cost/AoI distribution combinations, and compare the performance of the optimal policy with an aggressive strategy that transmits whenever possible.
翻译:信息年龄(AoI)是互联网(IoT)系统的关键性能衡量标准之一。及时更新状态对于许多IoT应用至关重要;但是,及时更新状态对许多IoT应用至关重要;但是,它们受到与可用能源有关的严格限制,基础信息来源不可靠。因此,必须仔细规划状况更新的时间安排,以节能,但与此同时,可能发生的情况是,当需要更新状态时,没有可靠的最新信息内容可以更新。作为克服这些不可预测的解决办法,人们可以使用多种来源,追踪同样感兴趣的信号,但能源成本和再稳定度不同,我们称之为信息来源多样性。我们认为,一个能源收获监测节点配备了一定的电池,并从多种不同信息来源收集状况更新。我们调查了将平均AoI降到最低程度的政策,并评估信息来源多样性对系统性能作用的作用。为了这样做,我们把问题发展成一个最佳的决策过程(MDP)。 最佳政策代表了行动的时间安排,例如随时更新资源来源,或者随时更新我们不动不动地分析A的策略。我们根据目前水平的能源水平和最佳组合,对A级分析进行最佳分析。