We utilise a sampler originating from nonequilibrium statistical mechanics, termed here Jarzynski-adjusted Langevin algorithm (JALA), to build statistical estimation methods in latent variable models. We achieve this by leveraging Jarzynski's equality and developing algorithms based on a weighted version of the unadjusted Langevin algorithm (ULA) with recursively updated weights. Adapting this for latent variable models, we develop a sequential Monte Carlo (SMC) method that provides the maximum marginal likelihood estimate of the parameters, termed JALA-EM. Under suitable regularity assumptions on the marginal likelihood, we provide a nonasymptotic analysis of the JALA-EM scheme implemented with stochastic gradient descent and show that it provably converges to the maximum marginal likelihood estimate. We demonstrate the performance of JALA-EM on a variety of latent variable models and show that it performs comparably to existing methods in terms of accuracy and computational efficiency. Importantly, the ability to recursively estimate marginal likelihoods - an uncommon feature among scalable methods - makes our approach particularly suited for model selection, which we validate through dedicated experiments.
翻译:我们利用一种源于非平衡统计力学的采样器(本文称为Jarzynski调整的Langevin算法,JALA)来构建潜变量模型中的统计估计方法。通过结合Jarzynski等式并开发基于带递归更新权重的未调整Langevin算法(ULA)加权版本的算法,我们实现了这一目标。针对潜变量模型进行适配后,我们开发了一种顺序蒙特卡洛(SMC)方法,该方法可提供参数的极大边缘似然估计,称为JALA-EM。在边缘似然满足适当正则性假设的条件下,我们对采用随机梯度下降实现的JALA-EM方案进行了非渐近分析,证明其可收敛至极大边缘似然估计。我们在多种潜变量模型上验证了JALA-EM的性能,结果表明其在精度和计算效率方面与现有方法相当。值得注意的是,递归估计边缘似然的能力——这是可扩展方法中罕见的特性——使我们的方法特别适用于模型选择,我们通过专项实验验证了这一点。