We utilise a sampler originating from nonequilibrium statistical mechanics, termed here Jarzynski-adjusted Langevin algorithm (JALA), to build statistical estimation methods in latent variable models. We achieve this by leveraging Jarzynski's equality and developing algorithms based on a weighted version of the unadjusted Langevin algorithm (ULA) with recursively updated weights. Adapting this for latent variable models, we develop a sequential Monte Carlo (SMC) method that provides the maximum marginal likelihood estimate of the parameters, termed JALA-EM. Under suitable regularity assumptions on the marginal likelihood, we provide a nonasymptotic analysis of the JALA-EM scheme implemented with stochastic gradient descent and show that it provably converges to the maximum marginal likelihood estimate. We demonstrate the performance of JALA-EM on a variety of latent variable models and show that it performs comparably to existing methods in terms of accuracy and computational efficiency. Importantly, the ability to recursively estimate marginal likelihoods - an uncommon feature among scalable methods - makes our approach particularly suited for model selection, which we validate through dedicated experiments.


翻译:我们利用一种源于非平衡统计力学的采样器(本文称为Jarzynski调整的Langevin算法,JALA)来构建潜变量模型中的统计估计方法。通过结合Jarzynski等式并开发基于带递归更新权重的未调整Langevin算法(ULA)加权版本的算法,我们实现了这一目标。针对潜变量模型进行适配后,我们开发了一种顺序蒙特卡洛(SMC)方法,该方法可提供参数的极大边缘似然估计,称为JALA-EM。在边缘似然满足适当正则性假设的条件下,我们对采用随机梯度下降实现的JALA-EM方案进行了非渐近分析,证明其可收敛至极大边缘似然估计。我们在多种潜变量模型上验证了JALA-EM的性能,结果表明其在精度和计算效率方面与现有方法相当。值得注意的是,递归估计边缘似然的能力——这是可扩展方法中罕见的特性——使我们的方法特别适用于模型选择,我们通过专项实验验证了这一点。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员