Background: It has long been advised to account for baseline covariates in the analysis of confirmatory randomised trials, with the main statistical justifications being that this increases power and, when a randomisation scheme balanced covariates, permits a valid estimate of experimental error. There are various methods available to account for covariates but it is not clear how to choose among them. Methods: Taking the perspective of writing a statistical analysis plan, we consider how to choose between the three most promising broad approaches: direct adjustment, standardisation and inverse-probability-of-treatment weighting. Results: The three approaches are similar in being asymptotically efficient, in losing efficiency with mis-specified covariate functions, and in handling designed balance. If a marginal estimand is targeted (for example, a risk difference or survival difference), then direct adjustment should be avoided because it involves fitting non-standard models that are subject to convergence issues. Convergence is most likely with IPTW. Robust standard errors used by IPTW are anti-conservative at small sample sizes. All approaches can use similar methods to handle missing covariate data. With missing outcome data, each method has its own way to estimate a treatment effect in the all-randomised population. We illustrate some issues in a reanalysis of GetTested, a randomised trial designed to assess the effectiveness of an electonic sexually-transmitted-infection testing and results service. Conclusions: No single approach is always best: the choice will depend on the trial context. We encourage trialists to consider all three methods more routinely.


翻译:长期以来一直建议,在分析确认随机试验时考虑基线共差,主要统计理由是,这增加了权力,当随机计算办法平衡共差时,允许对试验错误作出有效估计。有多种方法可用于计算共差,但不清楚如何作出选择。 方法:从撰写统计分析计划的角度出发,我们考虑如何在最有希望的三大方法之间作出选择:直接调整、标准化和反偏差的例行治疗加权。结果:三种方法相似,即这种方法提高了能量,当随机计算办法平衡平衡兼顾时,则允许对试验错误作出有效估计。如果边际估计和计算方法对共差(例如风险差异或生存差异)有不同,那么直接调整就应该避免,因为它涉及与非标准模型相适应,容易出现趋同问题。IPTW使用的标准误差方法总是在小样尺寸上具有防腐蚀性。所有方法都可以用来鼓励处理误差的共变函数,在计算结果时采用相似的方法。我们用三种方法来评估一次误差结果。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
4+阅读 · 2017年12月12日
Arxiv
0+阅读 · 2022年2月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
4+阅读 · 2017年12月12日
Top
微信扫码咨询专知VIP会员