Non-rigid registration is a crucial task with applications in medical imaging, industrial robotics, computer vision, and entertainment. Standard approaches accomplish this task using variations on the Non-Rigid Iterative Closest Point (NRICP) algorithms, which are prone to local minima and sensitive to initial conditions. We instead formulate the non-rigid registration problem as a Signed Distance Function (SDF) matching optimization problem, which provides richer shape information compared to traditional ICP methods. To avoid degenerate solutions, we propose to use a smooth Skinning Eigenmode subspace to parameterize the optimization problem. Finally, we propose an adaptive subspace optimization scheme to allow the resolution of localized deformations within the optimization. The result is a non-rigid registration algorithm that is more robust than NRICP, without the parameter sensitivity present in other SDF-matching approaches.
翻译:非刚性配准在医学影像、工业机器人、计算机视觉和娱乐领域具有关键应用价值。传统方法通常采用非刚性迭代最近点算法的变体实现该任务,但这类方法易陷入局部极小值且对初始条件敏感。本文提出将非刚性配准问题构建为符号距离函数匹配优化问题,相较于传统ICP方法能提供更丰富的形状信息。为避免退化解,我们提出采用平滑蒙皮特征模态子空间对优化问题进行参数化。最后,我们提出自适应子空间优化方案,以在优化过程中解析局部形变。由此得到的非刚性配准算法比NRICP更具鲁棒性,且避免了其他SDF匹配方法中存在的参数敏感性问题。