Entity Alignment (EA) aims to find equivalent entity pairs between KGs, which is the core step of bridging and integrating multi-source KGs. In this paper, we argue that existing GNN-based EA methods inherit the inborn defects from their neural network lineage: weak scalability and poor interpretability. Inspired by recent studies, we reinvent the Label Propagation algorithm to effectively run on KGs and propose a non-neural EA framework -- LightEA, consisting of three efficient components: (i) Random Orthogonal Label Generation, (ii) Three-view Label Propagation, and (iii) Sparse Sinkhorn Iteration. According to the extensive experiments on public datasets, LightEA has impressive scalability, robustness, and interpretability. With a mere tenth of time consumption, LightEA achieves comparable results to state-of-the-art methods across all datasets and even surpasses them on many.
翻译:实体对齐(EA)的目的是在KGs之间找到对等实体,这是连接和整合多源KGs的核心步骤。 在本文中,我们认为,基于GNN的现有EA方法继承了神经网络线的固有缺陷:可缩缩缩性弱和可解释性差。根据最近的研究,我们重新发明了Label 推进算法,在KGs上有效运行,并提出一个非神经EA框架 -- -- LightEA,由三个高效组成部分组成:(一) Random Orthogonal Label Page,(二) 三视图Label Propagation,和(三) Sprass Sinkhorn 迭代。根据对公共数据集的广泛实验, LightEA具有惊人的可缩放性、稳健性和可解释性。只要使用十分之一的时间,LightEA就能在所有数据集中取得与最新方法相近的结果,甚至在许多数据集上超过这些结果。