We study the problem of predicting and controlling the future state distribution of an autonomous agent. This problem, which can be viewed as a reframing of goal-conditioned reinforcement learning (RL), is centered around learning a conditional probability density function over future states. Instead of directly estimating this density function, we indirectly estimate this density function by training a classifier to predict whether an observation comes from the future. Via Bayes' rule, predictions from our classifier can be transformed into predictions over future states. Importantly, an off-policy variant of our algorithm allows us to predict the future state distribution of a new policy, without collecting new experience. This variant allows us to optimize functionals of a policy's future state distribution, such as the density of reaching a particular goal state. While conceptually similar to Q-learning, our work lays a principled foundation for goal-conditioned RL as density estimation, providing justification for goal-conditioned methods used in prior work. This foundation makes hypotheses about Q-learning, including the optimal goal-sampling ratio, which we confirm experimentally. Moreover, our proposed method is competitive with prior goal-conditioned RL methods.
翻译:我们研究的是预测和控制自主剂未来状态分布的问题。 这个问题可以被视为重新组合基于目标的强化学习(RL), 其核心是学习未来各州的有条件的概率密度函数。 我们不直接估计密度函数,而是通过训练分类员来间接估计密度函数, 以预测某一观察是否来自未来。 Via Bayes 规则, 我们分类器的预测可以转换为未来各州的预测。 重要的是, 我们的算法的脱政策变方使我们能够预测新政策的未来状态分布, 而不收集新经验。 这个变方使我们能够优化政策未来状态分布的功能, 如达到特定目标状态的密度。 虽然我们的工作在概念上与Q- 学习相似, 但我们的工作为目标设定的RL作为密度估计奠定了一个原则性基础, 为在前工作中使用的目标设定的方法提供了理由。 这个基础对学习的假设, 包括最佳目标抽样比率, 我们通过实验来确认。 此外,我们提出的方法与先前的目标设定的方法具有竞争性。