We develop a difference-in-differences method in a general setting in which the treatment variable of interest may be non-binary and its value may change in each time period. It is generally difficult to estimate treatment parameters defined with the potential outcome given the entire path of treatment adoption, as each treatment path may be experienced by only a small number of observations. We propose an empirically tractable alternative using the concept of effective treatment, which summarizes the treatment path into a low-dimensional variable. Under a parallel trends assumption conditional on observed covariates, we show that doubly robust difference-in-differences estimands can identify certain average treatment effects for movers, even when the chosen effective treatment is misspecified. We consider doubly robust estimation and multiplier bootstrap inference, which are asymptotically justifiable if either an outcome regression function for stayers or a generalized propensity score is correctly parametrically specified. We illustrate the usefulness of our method by estimating the instantaneous and dynamic effects of union membership on wages.
翻译:在一般情况下,我们开发一种差异差异处理方法,使感兴趣的治疗变量可能是非二元性的,其价值在每一时期都可能发生变化;一般很难估计在整个治疗途径采用过程中,根据潜在结果界定的治疗参数,因为每个治疗路径可能只经历少量的观察;我们建议采用有效治疗的概念,将治疗路径总结成低维变量,从经验上可移植的替代方法;在以观察到的共变变量为条件的平行趋势假设下,我们表明,即使选择的有效治疗被错误地定了,但双重强强的差别 -- 异差估计值仍能确定移动者的某些平均治疗效果;我们认为,如果对停留者的结果回归功能或普遍偏差分有正确的分数,那么这种估计和倍增倍的推理是完全合理的;我们通过估计工会会员对工资的即时和动态影响来说明我们的方法的效用。