Backtesting risk measure forecasts requires identifiability (for model validation) and elicitability (for model comparison). The systemic risk measures CoVaR (conditional value-at-risk), CoES (conditional expected shortfall) and MES (marginal expected shortfall), measuring the risk of a position $Y$ given that a reference position $X$ is in distress, fail to be identifiable and elicitable. We establish the joint identifiability of CoVaR, MES and (CoVaR, CoES) together with the value-at-risk (VaR) of the reference position $X$, but show that an analogue result for elicitability fails. The novel notion of multi-objective elicitability however, relying on multivariate scores equipped with an order, leads to a positive result when using the lexicographic order on $\mathbb{R}^2$. We establish comparative backtests of Diebold--Mariano type for superior systemic risk forecasts and comparable VaR forecasts, accompanied by a traffic-light approach. We demonstrate the viability of these backtesting approaches in simulations and in an empirical application to DAX 30 and S&P 500 returns.


翻译:后测试风险计量的预测要求具备可识别性(模型验证)和可检测性(模型比较)。系统风险措施COVaR(有条件值风险)、COS(有条件预期短缺)和MES(边际预期短缺),衡量一个位置Y$的风险,因为参照点X美元处于困境,无法识别和可检测。我们建立了COVAR、MES和(CoVAR、COES)的可识别性,以及参照点值风险(VaR)的可识别性(美元风险),但表明可检测性模拟结果失败。然而,新的多目标可检测性概念,依赖配有订单的多变量计分数,在使用$\mathbb{R ⁇ 2$的词汇令时,会产生积极的结果。我们建立了Dibold-Mariano型的对比性背测试,用于更高级系统风险预测和可比VAR预测,并辅之以交通光方法。我们展示了这些在模拟和DAX30和SP500回的实证应用中进行后测试的方法的可行性。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于5G的网联汽车定位技术讲解
智能交通技术
5+阅读 · 2019年5月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月29日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于5G的网联汽车定位技术讲解
智能交通技术
5+阅读 · 2019年5月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员