This paper demonstrates the potentials of the long short-term memory (LSTM) when applyingwith macroeconomic time series data sampled at different frequencies. We first present how theconventional LSTM model can be adapted to the time series observed at mixed frequencies when thesame mismatch ratio is applied for all pairs of low-frequency output and higher-frequency variable. Togeneralize the LSTM to the case of multiple mismatch ratios, we adopt the unrestricted Mixed DAtaSampling (U-MIDAS) scheme (Foroni et al., 2015) into the LSTM architecture. We assess via bothMonte Carlo simulations and empirical application the out-of-sample predictive performance. Ourproposed models outperform the restricted MIDAS model even in a set up favorable to the MIDASestimator. For real world application, we study forecasting a quarterly growth rate of Thai realGDP using a vast array of macroeconomic indicators both quarterly and monthly. Our LSTM withU-MIDAS scheme easily beats the simple benchmark AR(1) model at all horizons, but outperformsthe strong benchmark univariate LSTM only at one and six months ahead. Nonetheless, we find thatour proposed model could be very helpful in the period of large economic downturns for short-termforecast. Simulation and empirical results seem to support the use of our proposed LSTM withU-MIDAS scheme to nowcasting application.
翻译:本文展示了长期短期内存(LSTM)在应用在不同频率抽样的宏观经济时间序列数据时的潜力。 我们首先展示了常规LSTM模型在对低频输出和高频变量的所有配对适用Same不匹配比率时,如何适应在混合频率观察到的时间序列。 将LSTM(LSTM)推广到多重不匹配比率的情况下, 我们采用不受限制的混合DAIDAS(U-MIDAS)计划(Foroni等人,2015年)在LSTM结构中采用。 我们通过Monte Carlo模拟和实证应用,评估了超模的预测性业绩。 我们提议的模型超越了MIDAS(MIDAS)模型, 即使在适合MIDASS测量器的设置中, 也超越了限制的MIDAS模型。 关于真实世界应用, 我们研究泰国真实GDP的季度增长率, 使用大量宏观经济指标。 我们的U-MIDAS(FORISTM)计划很容易在所有视野中击败简单的基准 AR(1) 模型,但我们现在的模型基准化模型已经超越了范围, 也只能在6个月前找到我们提议的LSTM(SIMA) 的大规模的模型。