We define a notion called leftmost separator of size at most $k$. A leftmost separator of size $k$ is a minimal separator $S$ that separates two given sets of vertices $X$ and $Y$ such that we "cannot move $S$ more towards $X$" such that $|S|$ remains smaller than the threshold. One of the incentives is that by using leftmost separators we can improve the time complexity of treewidth approximation. Treewidth approximation is a problem which is known to have a linear time FPT algorithm in terms of input size, and only single exponential in terms of the parameter, treewidth. It is not known whether this result can be improved theoretically. However, the coefficient of the parameter $k$ (the treewidth) in the exponent is large. Hence, our goal is to decrease the coefficient of $k$ in the exponent, in order to achieve a more practical algorithm. Hereby, we trade a linear-time algorithm for an $\mathcal{O}(n \log n)$-time algorithm. The previous known $\mathcal{O}(f(k) n \log n)$-time algorithms have dependences of $2^{24k}k!$, $2^{8.766k}k^2$ (a better analysis shows that it is $2^{7.671k}k^2$), and higher. In this paper, we present an algorithm for treewidth approximation which runs in time $\mathcal{O}(2^{6.755k}\ n \log n)$, Furthermore, we count the number of leftmost separators and give a tight upper bound for them. We show that the number of leftmost separators of size $\leq k$ is at most $C_{k-1}$ (Catalan number). Then, we present an algorithm which outputs all leftmost separators in time $\mathcal{O}(\frac{4^k}{\sqrt{k}}n)$.
翻译:我们定义了一个概念, 其大小为$k。 其大小为 { 最左边的分离器, 其大小为 $k。 3 的最小分离器, 其大小为 最小的分离器 $S$, 将给定的两套螺旋, 美元和美元分开, 这样我们“ 不能将美元移到美元”, 因此$S 美元仍然比阈值小。 激励之一是, 通过使用最左边的分离器, 我们可以用最左边的缩放近点来提高时间的复杂度。 树宽近点是一个问题, 以输入大小为直线性时间 FPT 运算法, 以输入大小为 美元, 仅以参数, 树宽点值为 。 然而, 这个结果能否在理论上得到改进 $k 美元( 树枝) 。 因此, 我们的目标是通过左边点降低 的系数, 以更实用的算法 。 Hereby, 我们用直线式算法来计算 $_ 美元 美元 。 (n) 美元 。 (n) 。