Kim et al. (2021) gave a method to embed a given binary $[n,k]$ code $\mathcal{C}$ $(k = 3, 4)$ into a self-orthogonal code of the shortest length which has the same dimension $k$ and minimum distance $d' \ge d(\mathcal{C})$. We extend this result by proposing a new method related to a special matrix, called the self-orthogonality matrix $SO_k$, obtained by shortening a Reed-Muller code $\mathcal R(2,k)$. Using this approach, we can extend binary linear codes to many optimal self-orthogonal codes of dimensions $5$ and $6$. Furthermore, we partially disprove the conjecture (Kim et al. (2021)) by showing that if $31 \le n \le 256$ and $n\equiv 14,22,29 \pmod{31}$, then there exist optimal $[n,5]$ codes which are self-orthogonal. We also construct optimal self-orthogonal $[n,6]$ codes when $41 \le n \le 256$ satisfies $n \ne 46, 54, 61$ and $n \not\equiv 7, 14, 22, 29, 38, 45, 53, 60 \pmod{63}$.
翻译:Kim et al. (2021) Kim et al. (2021) 给出了一种方法,将给定的二进制代码$[n,k]$$\mathcal{C}$(k)$=3,4美元(k)$(3,4美元)嵌入一个最短长度的自正方形代码,该代码的尺寸相同,美元和最低距离美元(g) d(g) d(mathcal{C})$(2021) 。我们通过提出与一个特殊矩阵有关的新方法来扩大这一结果,称为自正方形矩阵,称为自正方形矩阵$[SO]_K$_k$(美元),通过缩短Reed- Muller代码$(mathcal R(2,k)$)$(美元) 美元。使用这一方法,我们可以将二进制线性代码扩展至许多最优的自正方形代码,530美元和6美元。 此外,我们部分地否定了自定义(Kim et al. (2021) ) 如果 31\ 258, AS- real deal card\ ccococode, 那么, 那么, 那么, 那么, 那么, 416 418 251 4\ n 4\ n6, 。