Autonomous modeling of artificial swarms is necessary because manual creation is a time intensive and complicated procedure which makes it impractical. An autonomous approach employing deep reinforcement learning is presented in this study for swarm navigation. In this approach, complex 3D environments with static and dynamic obstacles and resistive forces (like linear drag, angular drag, and gravity) are modeled to track multiple dynamic targets. Moreover, reward functions for robust swarm formation and target tracking are devised for learning complex swarm behaviors. Since the number of agents is not fixed and has only the partial observance of the environment, swarm formation and navigation become challenging. In this regard, the proposed strategy consists of three main phases to tackle the aforementioned challenges: 1) A methodology for dynamic swarm management, 2) Avoiding obstacles, Finding the shortest path towards the targets, 3) Tracking the targets and Island modeling. The dynamic swarm management phase translates basic sensory input to high level commands to enhance swarm navigation and decentralized setup while maintaining the swarms size fluctuations. While, in the island modeling, the swarm can split into individual subswarms according to the number of targets, conversely, these subswarms may join to form a single huge swarm, giving the swarm ability to track multiple targets. Customized state of the art policy based deep reinforcement learning algorithms are employed to achieve significant results. The promising results show that our proposed strategy enhances swarm navigation and can track multiple static and dynamic targets in complex dynamic environments.


翻译:人工蜂群自动建模是必要的,因为人工蜂群自动建模是一种时间密集和复杂的程序,因此不切实际。本研究为群温导航提供了一种采用深度强化学习的自主方法。在这一方法中,3D复杂环境具有静态和动态障碍和阻力(如线性拖动、角性拖动和重力),是用来跟踪多种动态目标的模型。此外,为学习复杂的蜂群行为而设计了强力形成和目标跟踪的奖励功能。由于代理体的数量不是固定的,而且只有部分遵守环境,形成群群和导航才变得具有挑战性。在这方面,拟议战略包括三个主要阶段来应对上述挑战:1) 动态暖化管理方法,2) 避免障碍,找到最短的目标路径,3) 跟踪目标和岛屿建模。动态暖气管理阶段将基本的感官输入高层指令,以加强群状导航和分散的设置,同时保持群体大小波动。在岛屿建模中,暖和导航可分为单个亚温亚种亚种亚种亚种亚热目标,在动态战略中可以形成一个巨大的动态目标,从而形成一个巨大的动态学习模型,从而显示以动态为稳定的轨道。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员