Artificial intelligence (AI) has demonstrated remarkable success across various applications. In light of this trend, the field of automated trading has developed a keen interest in leveraging AI techniques to forecast the future prices of financial assets. This interest stems from the need to address trading challenges posed by the inherent volatility and dynamic nature of asset prices. However, crafting a flawless strategy becomes a formidable task when dealing with assets characterized by intricate and ever-changing price dynamics. To surmount these formidable challenges, this research employs an innovative rule-based strategy approach to train Deep Reinforcement Learning (DRL). This application is carried out specifically in the context of trading Bitcoin (BTC) and Ripple (XRP). Our proposed approach hinges on the integration of Deep Q-Network, Double Deep Q-Network, Dueling Deep Q-learning networks, alongside the Advantage Actor-Critic algorithms. Each of them aims to yield an optimal policy for our application. To evaluate the effectiveness of our Deep Reinforcement Learning (DRL) approach, we rely on portfolio wealth and the trade signal as performance metrics. The experimental outcomes highlight that Duelling and Double Deep Q-Network outperformed when using XRP with the increasing of the portfolio wealth. All codes are available in this \href{https://github.com/VerlonRoelMBINGUI/RL_Final_Projects_AMMI2023}{\color{blue}Github link}.


翻译:人工智能(AI)已在众多应用领域展现出卓越成就。在此趋势下,自动化交易领域对利用AI技术预测金融资产未来价格产生了浓厚兴趣。这一兴趣源于应对资产价格固有波动性和动态特性所带来的交易挑战的需求。然而,面对价格动态复杂多变的资产,制定完美策略成为一项艰巨任务。为克服这些挑战,本研究采用创新的基于规则的策略方法训练深度强化学习(DRL),并将其具体应用于比特币(BTC)和瑞波币(XRP)的交易场景。我们提出的方法核心在于整合深度Q网络、双重深度Q网络、竞争深度Q学习网络以及优势演员-评论家算法,旨在为应用生成最优策略。为评估深度强化学习(DRL)方法的有效性,我们采用投资组合财富和交易信号作为性能指标。实验结果表明,在使用XRP时,竞争与双重深度Q网络在提升投资组合财富方面表现更优。所有代码可通过此Github链接获取:https://github.com/VerlonRoelMBINGUI/RL_Final_Projects_AMMI2023。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2021年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员