The principle of least effort is believed to be a universal rule for living systems. Its application to the derivation of the power law probability distributions of living systems has long been challenging. Recently, a measure of efficiency was proposed as a tool of deriving Zipf s and Pareto s laws directly from the principle of least effort. The present work is a further investigation of this efficiency measure from a mathematical point of view. The aim is to get further insight into its properties and usefulness as a metric of performance. We address some key mathematical properties of this efficiency such as its sign, uniqueness and robustness. We also look at the relationship between this measure and other properties of the system of interest such as inequality and uncertainty, by introducing a new method for calculating non-negative continuous entropy.


翻译:据认为,最低努力原则是生活系统的普遍规则,其应用到生活系统的权力法概率分布的衍生过程长期以来一直具有挑战性。最近,提出了一种效率衡量标准,作为直接从最低努力原则中引出Zipf s和Pareto法律的工具。目前的工作是从数学角度对这一效率衡量标准作进一步调查。目的是进一步深入了解其作为性能衡量尺度的特性和有用性。我们探讨了这种效率的一些关键数学特性,例如其特征、独特性和稳健性。我们还研究了这一计量标准与不平等和不确定性等其他利益系统属性之间的关系,为此采用了一种新的方法来计算非消极的连续恒温。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员