In this paper, we present a model for semantic memory that allows machines to collect information and experiences to become more proficient with time. Post semantic analysis of the sensory and other related data, the processed information is stored in the knowledge graph which is then used to comprehend the work instructions expressed in natural language. This imparts industrial robots cognitive behavior to execute the required tasks in a deterministic manner. The paper outlines the architecture of the system along with an implementation of the proposal.
翻译:在本文中,我们提出了一个语义内存模型,使机器收集信息和经验时能更熟练地掌握时间。在对感官数据和其他相关数据进行语义分析后,处理的信息储存在知识图中,然后用于理解以自然语言表达的工作指示。这让工业机器人认知行为以决定性的方式完成所需的任务。该文件概述了系统结构以及提案的实施。