Mapping spoken text to gestures is an important research topic for robots with conversation capabilities. According to studies on human co-speech gestures, a reasonable solution for mapping is using a concept-based approach in which a text is first mapped to a semantic cluster (i.e., a concept) containing texts with similar meanings. Subsequently, each concept is mapped to a predefined gesture. By using a concept-based approach, this paper discusses the practical issue of obtaining concepts for a unique vocabulary personalized for a conversational agent. Using Microsoft Rinna as an agent, we qualitatively compare concepts obtained automatically through a natural language processing (NLP) approach to those obtained manually through a sociological approach. We then identify three limitations of the NLP approach: at the semantic level with emojis and symbols; at the semantic level with slang, new words, and buzzwords; and at the pragmatic level. We attribute these limitations to the personalized vocabulary of Rinna. A follow-up experiment demonstrates that robot gestures selected using a concept-based approach leave a better impression than randomly selected gestures for the Rinna vocabulary, suggesting the usefulness of a concept-based gesture generation system for personalized vocabularies. This study provides insights into the development of gesture generation systems for conversational agents with personalized vocabularies.
翻译:描述手势的口头文字是具有对话能力的机器人的一个重要研究课题。根据关于人类共同语言手势的研究,一个合理的绘图解决方案是使用基于概念的方法,首先将文字映射成含有类似含义的语义组(即概念),然后将每个概念映射成一个预先定义的手势。本文件通过使用基于概念的方法,讨论了获得一个独特的词汇概念的实用问题,对一个对话代理人来说,这是个个性化词汇。利用微软Rynna作为代理,我们用自然语言处理(NLP)方法自动获得的概念与通过社会学方法手动获得的概念进行定性比较。然后我们确定了NLP方法的三个局限性:在语义组(即概念)一级,首先将文字映像和符号映射成一个语义组(即概念),然后在语义层面,将这些局限性归因于Rynna的个人词汇。后续实验表明,使用基于概念的方法选择的机器人手势比随机选择的手势处理法(NLP)方法对通过社会学方法获得的概念进行定性比较。我们然后确定了NINA的手势学方法方法的三种限制:在语义层次层次层次上,用个人动作系统为个人演变化的手势系统提供个人动作化的手势感力学概念化思维感。