Time series forecasting is a challenging task with applications in a wide range of domains. Auto-regression is one of the most common approaches to address these problems. Accordingly, observations are modelled by multiple regression using their past lags as predictor variables. We investigate the extension of auto-regressive processes using statistics which summarise the recent past dynamics of time series. The result of our research is a novel framework called VEST, designed to perform feature engineering using univariate and numeric time series automatically. The proposed approach works in three main steps. First, recent observations are mapped onto different representations. Second, each representation is summarised by statistical functions. Finally, a filter is applied for feature selection. We discovered that combining the features generated by VEST with auto-regression significantly improves forecasting performance. We provide evidence using 90 time series with high sampling frequency. VEST is publicly available online.
翻译:时间序列的预测是一项具有挑战性的任务,其应用范围很广。 自动回归是解决这些问题的最常见方法之一。 因此, 观测是以多重回归为模型的, 以其过去作为预测变量的滞后情况作为模型。 我们使用统计来调查自动回归过程的延伸, 该统计总结了最近过去的时间序列动态。 我们的研究结果是一个叫VEST的新颖的框架, 目的是利用单向和数字时间序列自动进行特征工程。 拟议的方法有三个主要步骤。 首先, 最近的观测分布在不同的表达方式上。 其次, 每个代表方式都由统计功能进行汇总。 最后, 对特征选择应用了一个过滤器。 我们发现, 将VEST生成的特征与自动回归过程相结合, 将显著改善预测性能。 我们发现, 我们使用90个时间序列提供证据, 高采样频率。 VEST 可在网上公开查阅 。