Cloud computing is ubiquitous: more and more companies are moving the workloads into the Cloud. However, this rise in popularity challenges Cloud service providers, as they need to monitor the quality of their ever-growing offerings effectively. To address the challenge, we designed and implemented an automated monitoring system for the IBM Cloud Platform. This monitoring system utilizes deep learning neural networks to detect anomalies in near-real-time in multiple Platform components simultaneously. After running the system for a year, we observed that the proposed solution frees the DevOps team's time and human resources from manually monitoring thousands of Cloud components. Moreover, it increases customer satisfaction by reducing the risk of Cloud outages. In this paper, we share our solutions' architecture, implementation notes, and best practices that emerged while evolving the monitoring system. They can be leveraged by other researchers and practitioners to build anomaly detectors for complex systems.
翻译:云计算是无处不在的: 越来越多的公司正在将工作量转移到云中。 然而, 广受欢迎度的上升对云服务供应商提出了挑战,因为他们需要有效监测其不断增长的供货质量。 为了应对这一挑战,我们设计并实施了IBM云平台自动监测系统。 这个监测系统利用深层学习的神经网络,同时检测近实时多个平台组件中的异常现象。 在运行该系统一年后,我们观察到, 拟议的解决方案使DevOps团队的时间和人力资源从人工监测数千个云组成部分中解放出来。 此外, 降低云流断流的风险, 提高了客户的满意度。 在本文中, 我们分享了我们在开发监测系统过程中出现的解决方案的结构、 执行说明和最佳做法。 其它研究人员和从业人员可以利用这些解决方案为复杂系统建立异常探测器。