We examine a variety of graphical models to construct optimal portfolios. Graphical models such as PCA-KMeans, autoencoders, dynamic clustering, and structural learning can capture the time varying patterns in the covariance matrix and allow the creation of an optimal and robust portfolio. We compared the resulting portfolios from the different models with baseline methods. In many cases our graphical strategies generated steadily increasing returns with low risk and outgrew the S&P 500 index. This work suggests that graphical models can effectively learn the temporal dependencies in time series data and are proved useful in asset management.
翻译:我们研究各种图形模型,以构建最佳组合组合。图形模型,如CPA-KMeans、自动编码器、动态组合和结构学习,可以捕捉共变矩阵中不同时间的格局,并能够创建最佳和稳健的组合组合。我们将不同模型产生的组合组合与基线方法进行比较。在许多情况下,我们的图形战略产生的回报稳步增加,风险低,超过S & P 500指数。这项工作表明,图形模型能够有效学习时间序列数据中的时间依赖性,并证明在资产管理中有用。